The Variance-Gamma Process for Option Pricing
By: Rohan Shenoy, Peter Kempthorne
Potential Business Impact:
Better stock predictions by understanding price changes.
This paper explores the concept of random-time subordination in modelling stock-price dynamics, and We first present results on the Laplace distribution as a Gaussian variance-mixture, in particular a more efficient volatility estimation procedure through the absolute moments. We generalise the Laplace model to characterise the powerful variance gamma model of Madan et al. as a Gamma time-subordinated Brownian motion to price European call options via an Esscher transform method. We find that the Variance Gamma model is able to empirically explain excess kurtosis found in log-returns data, rejecting a Black-Scholes assumption in a hypothesis test.
Similar Papers
On Time-subordinated Brownian Motion Processes for Financial Markets
Mathematical Finance
Models stock price changes better.
On Time-subordinated Brownian Motion Processes for Financial Markets
Mathematical Finance
Unlocks secrets of stock market's random ups and downs.
Analysing Models for Volatility Clustering with Subordinated Processes: VGSA and Beyond
Applications
Makes money predictions better with complex math.