Score: 0

Performance Evaluation of an Integrated System for Visible Light Communication and Positioning Using an Event Camera

Published: October 20, 2025 | arXiv ID: 2510.17203v1

By: Ryota Soga , Masataka Kobayashi , Tsukasa Shimizu and more

Potential Business Impact:

Helps cars find their way in tunnels.

Business Areas:
Optical Communication Hardware

Event cameras, featuring high temporal resolution and high dynamic range, offer visual sensing capabilities comparable to conventional image sensors while capturing fast-moving objects and handling scenes with extreme lighting contrasts such as tunnel exits. Leveraging these properties, this study proposes a novel self-localization system that integrates visible light communication (VLC) and visible light positioning (VLP) within a single event camera. The system enables a vehicle to estimate its position even in GPS-denied environments, such as tunnels, by using VLC to obtain coordinate information from LED transmitters and VLP to estimate the distance to each transmitter. Multiple LEDs are installed on the transmitter side, each assigned a unique pilot sequence based on Walsh-Hadamard codes. The event camera identifies individual LEDs within its field of view by correlating the received signal with these codes, allowing clear separation and recognition of each light source. This mechanism enables simultaneous high-capacity MISO (multi-input single-output) communication through VLC and precise distance estimation via phase-only correlation (POC) between multiple LED pairs. To the best of our knowledge, this is the first vehicle-mounted system to achieve simultaneous VLC and VLP functionalities using a single event camera. Field experiments were conducted by mounting the system on a vehicle traveling at 30 km/h (8.3 m/s). The results demonstrated robust real-world performance, with a root mean square error (RMSE) of distance estimation within 0.75 m for ranges up to 100 m and a bit error rate (BER) below 0.01 across the same range.

Country of Origin
🇯🇵 Japan

Page Count
7 pages

Category
Computer Science:
Robotics