Score: 0

Efficient Few-shot Identity Preserving Attribute Editing for 3D-aware Deep Generative Models

Published: October 21, 2025 | arXiv ID: 2510.18287v1

By: Vishal Vinod

Potential Business Impact:

Changes 3D faces with few pictures.

Business Areas:
Identity Management Information Technology, Privacy and Security

Identity preserving editing of faces is a generative task that enables modifying the illumination, adding/removing eyeglasses, face aging, editing hairstyles, modifying expression etc., while preserving the identity of the face. Recent progress in 2D generative models have enabled photorealistic editing of faces using simple techniques leveraging the compositionality in GANs. However, identity preserving editing for 3D faces with a given set of attributes is a challenging task as the generative model must reason about view consistency from multiple poses and render a realistic 3D face. Further, 3D portrait editing requires large-scale attribute labelled datasets and presents a trade-off between editability in low-resolution and inflexibility to editing in high resolution. In this work, we aim to alleviate some of the constraints in editing 3D faces by identifying latent space directions that correspond to photorealistic edits. To address this, we present a method that builds on recent advancements in 3D-aware deep generative models and 2D portrait editing techniques to perform efficient few-shot identity preserving attribute editing for 3D-aware generative models. We aim to show from experimental results that using just ten or fewer labelled images of an attribute is sufficient to estimate edit directions in the latent space that correspond to 3D-aware attribute editing. In this work, we leverage an existing face dataset with masks to obtain the synthetic images for few attribute examples required for estimating the edit directions. Further, to demonstrate the linearity of edits, we investigate one-shot stylization by performing sequential editing and use the (2D) Attribute Style Manipulation (ASM) technique to investigate a continuous style manifold for 3D consistent identity preserving face aging. Code and results are available at: https://vishal-vinod.github.io/gmpi-edit/

Country of Origin
🇺🇸 United States

Page Count
14 pages

Category
Computer Science:
CV and Pattern Recognition