Impartial Selection with Predictions
By: Javier Cembrano, Felix Fischer, Max Klimm
Potential Business Impact:
Helps pick the best people fairly, even if they cheat.
We study the selection of agents based on mutual nominations, a theoretical problem with many applications from committee selection to AI alignment. As agents both select and are selected, they may be incentivized to misrepresent their true opinion about the eligibility of others to influence their own chances of selection. Impartial mechanisms circumvent this issue by guaranteeing that the selection of an agent is independent of the nominations cast by that agent. Previous research has established strong bounds on the performance of impartial mechanisms, measured by their ability to approximate the number of nominations for the most highly nominated agents. We study to what extent the performance of impartial mechanisms can be improved if they are given a prediction of a set of agents receiving a maximum number of nominations. Specifically, we provide bounds on the consistency and robustness of such mechanisms, where consistency measures the performance of the mechanisms when the prediction is accurate and robustness its performance when the prediction is inaccurate. For the general setting where up to $k$ agents are to be selected and agents nominate any number of other agents, we give a mechanism with consistency $1-O\big(\frac{1}{k}\big)$ and robustness $1-\frac{1}{e}-O\big(\frac{1}{k}\big)$. For the special case of selecting a single agent based on a single nomination per agent, we prove that $1$-consistency can be achieved while guaranteeing $\frac{1}{2}$-robustness. A close comparison with previous results shows that (asymptotically) optimal consistency can be achieved with little to no sacrifice in terms of robustness.
Similar Papers
Mechanism Design with Outliers and Predictions
CS and Game Theory
Lets designers ignore weird preferences to improve fairness.
Mechanism Design with Outliers and Predictions
CS and Game Theory
Ignores extreme opinions to make better choices.
Peer Selection with Friends and Enemies
Theoretical Economics
Helps pick the best person when you don't know who's friends.