Score: 0

A Graph Signal Processing Framework for Hallucination Detection in Large Language Models

Published: October 21, 2025 | arXiv ID: 2510.19117v1

By: Valentin Noël

Potential Business Impact:

Finds fake text in AI writing.

Business Areas:
DSP Hardware

Large language models achieve impressive results but distinguishing factual reasoning from hallucinations remains challenging. We propose a spectral analysis framework that models transformer layers as dynamic graphs induced by attention, with token embeddings as signals on these graphs. Through graph signal processing, we define diagnostics including Dirichlet energy, spectral entropy, and high-frequency energy ratios, with theoretical connections to computational stability. Experiments across GPT architectures suggest universal spectral patterns: factual statements exhibit consistent "energy mountain" behavior with low-frequency convergence, while different hallucination types show distinct signatures. Logical contradictions destabilize spectra with large effect sizes ($g>1.0$), semantic errors remain stable but show connectivity drift, and substitution hallucinations display intermediate perturbations. A simple detector using spectral signatures achieves 88.75% accuracy versus 75% for perplexity-based baselines, demonstrating practical utility. These findings indicate that spectral geometry may capture reasoning patterns and error behaviors, potentially offering a framework for hallucination detection in large language models.

Page Count
11 pages

Category
Computer Science:
Computation and Language