A Graph Signal Processing Framework for Hallucination Detection in Large Language Models
By: Valentin Noël
Potential Business Impact:
Finds fake text in AI writing.
Large language models achieve impressive results but distinguishing factual reasoning from hallucinations remains challenging. We propose a spectral analysis framework that models transformer layers as dynamic graphs induced by attention, with token embeddings as signals on these graphs. Through graph signal processing, we define diagnostics including Dirichlet energy, spectral entropy, and high-frequency energy ratios, with theoretical connections to computational stability. Experiments across GPT architectures suggest universal spectral patterns: factual statements exhibit consistent "energy mountain" behavior with low-frequency convergence, while different hallucination types show distinct signatures. Logical contradictions destabilize spectra with large effect sizes ($g>1.0$), semantic errors remain stable but show connectivity drift, and substitution hallucinations display intermediate perturbations. A simple detector using spectral signatures achieves 88.75% accuracy versus 75% for perplexity-based baselines, demonstrating practical utility. These findings indicate that spectral geometry may capture reasoning patterns and error behaviors, potentially offering a framework for hallucination detection in large language models.
Similar Papers
Grounding the Ungrounded: A Spectral-Graph Framework for Quantifying Hallucinations in multimodal LLMs
Machine Learning (CS)
Makes AI tell the truth, not make things up.
A Fully Spectral Neuro-Symbolic Reasoning Architecture with Graph Signal Processing as the Computational Backbone
Artificial Intelligence
Helps computers reason like humans, faster.
Enhancing Uncertainty Modeling with Semantic Graph for Hallucination Detection
Computation and Language
Helps AI tell true stories from fake ones.