Training-Free Spectral Fingerprints of Voice Processing in Transformers
By: Valentin Noël
Potential Business Impact:
Shows how AI learns languages differently.
Different transformer architectures implement identical linguistic computations via distinct connectivity patterns, yielding model imprinted ``computational fingerprints'' detectable through spectral analysis. Using graph signal processing on attention induced token graphs, we track changes in algebraic connectivity (Fiedler value, $\Delta\lambda_2$) under voice alternation across 20 languages and three model families, with a prespecified early window (layers 2--5). Our analysis uncovers clear architectural signatures: Phi-3-Mini shows a dramatic English specific early layer disruption ($\overline{\Delta\lambda_2}_{[2,5]}\!\approx\!-0.446$) while effects in 19 other languages are minimal, consistent with public documentation that positions the model primarily for English use. Qwen2.5-7B displays small, distributed shifts that are largest for morphologically rich languages, and LLaMA-3.2-1B exhibits systematic but muted responses. These spectral signatures correlate strongly with behavioral differences (Phi-3: $r=-0.976$) and are modulated by targeted attention head ablations, linking the effect to early attention structure and confirming functional relevance. Taken together, the findings are consistent with the view that training emphasis can leave detectable computational imprints: specialized processing strategies that manifest as measurable connectivity patterns during syntactic transformations. Beyond voice alternation, the framework differentiates reasoning modes, indicating utility as a simple, training free diagnostic for revealing architectural biases and supporting model reliability analysis.
Similar Papers
Spectral Archaeology: The Causal Topology of Model Evolution
Machine Learning (CS)
Finds hidden problems in AI language learning.
Geometry of Reason: Spectral Signatures of Valid Mathematical Reasoning
Machine Learning (CS)
Checks if AI's math answers are correct.
A Graph Signal Processing Framework for Hallucination Detection in Large Language Models
Computation and Language
Finds fake text in AI writing.