Score: 0

Step-Aware Residual-Guided Diffusion for EEG Spatial Super-Resolution

Published: October 22, 2025 | arXiv ID: 2510.19166v1

By: Hongjun Liu , Leyu Zhou , Zijianghao Yang and more

Potential Business Impact:

Makes brain signals clearer for computers.

Business Areas:
Smart Cities Real Estate

For real-world BCI applications, lightweight Electroencephalography (EEG) systems offer the best cost-deployment balance. However, such spatial sparsity of EEG limits spatial fidelity, hurting learning and introducing bias. EEG spatial super-resolution methods aim to recover high-density EEG signals from sparse measurements, yet is often hindered by distribution shift and signal distortion and thus reducing fidelity and usability for EEG analysis and visualization. To overcome these challenges, we introduce SRGDiff, a step-aware residual-guided diffusion model that formulates EEG spatial super-resolution as dynamic conditional generation. Our key idea is to learn a dynamic residual condition from the low-density input that predicts the step-wise temporal and spatial details to add and uses the evolving cue to steer the denoising process toward high-density reconstructions. At each denoising step, the proposed residual condition is additively fused with the previous denoiser feature maps, then a step-dependent affine modulation scales and shifts the activation to produce the current features. This iterative procedure dynamically extracts step-wise temporal rhythms and spatial-topographic cues to steer high-density recovery and maintain a fidelity-consistency balance. We adopt a comprehensive evaluation protocol spanning signal-, feature-, and downstream-level metrics across SEED, SEED-IV, and Localize-MI and multiple upsampling scales. SRGDiff achieves consistent gains of up to 40% over strong baselines, proving its superiority in the task of EEG spatial super-resolution. Moreover, topographic visualizations comparison and substantial EEG-FID gains jointly indicate that our SR EEG mitigates the spatial-spectral shift between low- and high-density recordings.

Page Count
21 pages

Category
Computer Science:
Multimedia