EchoFake: A Replay-Aware Dataset for Practical Speech Deepfake Detection
By: Tong Zhang, Yihuan Huang, Yanzhen Ren
Potential Business Impact:
Stops fake voices from tricking people over the phone.
The growing prevalence of speech deepfakes has raised serious concerns, particularly in real-world scenarios such as telephone fraud and identity theft. While many anti-spoofing systems have demonstrated promising performance on lab-generated synthetic speech, they often fail when confronted with physical replay attacks-a common and low-cost form of attack used in practical settings. Our experiments show that models trained on existing datasets exhibit severe performance degradation, with average accuracy dropping to 59.6% when evaluated on replayed audio. To bridge this gap, we present EchoFake, a comprehensive dataset comprising more than 120 hours of audio from over 13,000 speakers, featuring both cutting-edge zero-shot text-to-speech (TTS) speech and physical replay recordings collected under varied devices and real-world environmental settings. Additionally, we evaluate three baseline detection models and show that models trained on EchoFake achieve lower average EERs across datasets, indicating better generalization. By introducing more practical challenges relevant to real-world deployment, EchoFake offers a more realistic foundation for advancing spoofing detection methods.
Similar Papers
Acoustic Simulation Framework for Multi-channel Replay Speech Detection
Audio and Speech Processing
Makes voice assistants safer from fake voices.
Frustratingly Easy Zero-Day Audio DeepFake Detection via Retrieval Augmentation and Profile Matching
Sound
Finds fake voices even if they are new.
Fake Speech Wild: Detecting Deepfake Speech on Social Media Platform
Sound
Catches fake voices made by computers.