String graphs are quasi-isometric to planar graphs
By: James Davies
Potential Business Impact:
Turns complex network maps into simpler ones.
We prove that for every countable string graph $S$, there is a planar graph $G$ with $V(G)=V(S)$ such that \[ \frac{1}{23660800}d_S(u,v) \le d_G(u,v) \le 162 d_S(u,v) \] for all $u,v\in V(S)$, where $d_S(u,v)$, $d_G(u,v)$ denotes the distance between $u$ and $v$ in $S$ and $G$ respectively. In other words, string graphs are quasi-isometric to planar graphs. This theorem lifts a number of theorems from planar graphs to string graphs, we give some examples. String graphs have Assouad-Nagata (and asymptotic dimension) at most 2. Connected, locally finite, quasi-transitive string graphs are accessible. A finitely generated group $\Gamma$ is virtually a free product of free and surface groups if and only if $\Gamma$ is quasi-isometric to a string graph. Two further corollaries are that countable planar metric graphs and complete Riemannian planes are also quasi-isometric to planar graphs, which answers a question of Georgakopoulos and Papasoglu. For finite string graphs and planar metric graphs, our proofs yield polynomial time (for string graphs, this is in terms of the size of a representation given in the input) algorithms for generating such quasi-isometric planar graphs.
Similar Papers
String Graphs: Product Structure and Localised Representations
Combinatorics
Simplifies complex maps by breaking them into smaller parts.
String Graph Obstacles of High Girth and of Bounded Degree
Combinatorics
Helps computers understand special drawings better.
Well-quasi-orders on embedded planar graphs
Computational Geometry
Untangles complex knot shapes for computers.