Score: 0

Neurotremor: A wearable Supportive Device for Supporting Upper Limb Muscle Function

Published: October 2, 2025 | arXiv ID: 2510.19826v1

By: Aueaphum Aueawattthanaphisut, Thanyanee Srichaisak, Arissa Ieochai

Potential Business Impact:

Helps people move arms and hands better.

Business Areas:
Assistive Technology Health Care

A sensor-fused wearable assistance prototype for upper-limb function (triceps brachii and extensor pollicis brevis) is presented. The device integrates surface electromyography (sEMG), an inertial measurement unit (IMU), and flex/force sensors on an M5StickC plus an ESP32-S3 compute hub. Signals are band-pass and notch filtered; features (RMS, MAV, zero-crossings, and 4-12 Hz tremor-band power) are computed in 250 ms windows and fed to an INT8 TensorFlow Lite Micro model. Control commands are bounded by a control-barrier-function safety envelope and delivered within game-based tasks with lightweight personalization. In a pilot technical feasibility evaluation with healthy volunteers (n = 12) performing three ADL-oriented tasks, tremor prominence decreased (Delta TI = -0.092, 95% CI [-0.102, -0.079]), range of motion increased (+12.65%, 95% CI [+8.43, +13.89]), repetitions rose (+2.99 min^-1, 95% CI [+2.61, +3.35]), and the EMG median-frequency slope became less negative (Delta = +0.100 Hz/min, 95% CI [+0.083, +0.127]). The sensing-to-assist loop ran at 100 Hz with 8.7 ms median on-device latency, 100% session completion, and 0 device-related adverse events. These results demonstrate technical feasibility of embedded, sensor-fused assistance for upper-limb function; formal patient studies under IRB oversight are planned.

Page Count
6 pages

Category
Quantitative Biology:
Neurons and Cognition