Score: 0

Limiting Spectral Distribution of High-dimensional Multivariate Kendall-$τ$

Published: October 24, 2025 | arXiv ID: 2510.21077v1

By: Ruoyu Wu

Potential Business Impact:

Finds patterns in many numbers at once.

Business Areas:
A/B Testing Data and Analytics

The multivariate Kendall-$\tau$ statistic, denoted by $K_n$, plays a significant role in robust statistical analysis. This paper establishes the limiting properties of the empirical spectral distribution (ESD) of $K_n$. We demonstrate that the ESD of $\frac{1}{2}pK_n$ converges almost surely to the Mar\v{c}enko--Pastur law with variance parameter $\frac{1}{2}$, analogous to the classical result for sample covariance matrices. Using Stieltjes transform techniques, we extend these results to the independent component model, deriving a fixed-point equation that characterizes the limiting spectral distribution of $\frac{1}{2}tr\Sigma K_n$. The theoretical findings are validated through comprehensive simulation studies.

Page Count
26 pages

Category
Mathematics:
Statistics Theory