DiffGRM: Diffusion-based Generative Recommendation Model
By: Zhao Liu , Yichen Zhu , Yiqing Yang and more
Potential Business Impact:
Suggests better movies by understanding item codes.
Generative recommendation (GR) is an emerging paradigm that represents each item via a tokenizer as an n-digit semantic ID (SID) and predicts the next item by autoregressively generating its SID conditioned on the user's history. However, two structural properties of SIDs make ARMs ill-suited. First, intra-item consistency: the n digits jointly specify one item, yet the left-to-right causality trains each digit only under its prefix and blocks bidirectional cross-digit evidence, collapsing supervision to a single causal path. Second, inter-digit heterogeneity: digits differ in semantic granularity and predictability, while the uniform next-token objective assigns equal weight to all digits, overtraining easy digits and undertraining hard digits. To address these two issues, we propose DiffGRM, a diffusion-based GR model that replaces the autoregressive decoder with a masked discrete diffusion model (MDM), thereby enabling bidirectional context and any-order parallel generation of SID digits for recommendation. Specifically, we tailor DiffGRM in three aspects: (1) tokenization with Parallel Semantic Encoding (PSE) to decouple digits and balance per-digit information; (2) training with On-policy Coherent Noising (OCN) that prioritizes uncertain digits via coherent masking to concentrate supervision on high-value signals; and (3) inference with Confidence-guided Parallel Denoising (CPD) that fills higher-confidence digits first and generates diverse Top-K candidates. Experiments show consistent gains over strong generative and discriminative recommendation baselines on multiple datasets, improving NDCG@10 by 6.9%-15.5%. Code is available at https://github.com/liuzhao09/DiffGRM.
Similar Papers
Masked Diffusion for Generative Recommendation
Machine Learning (CS)
Recommends items faster by guessing missing ones.
Masked Diffusion for Generative Recommendation
Machine Learning (CS)
Recommends items faster and better for you.
DiffuGR: Generative Document Retrieval with Diffusion Language Models
Information Retrieval
Finds information faster by guessing and fixing answers.