Score: 1

K-DAREK: Distance Aware Error for Kurkova Kolmogorov Networks

Published: October 24, 2025 | arXiv ID: 2510.22021v1

By: Masoud Ataei, Vikas Dhiman, Mohammad Javad Khojasteh

Potential Business Impact:

Makes AI learn faster and safer.

Business Areas:
Content Delivery Network Content and Publishing

Neural networks are parametric and powerful tools for function approximation, and the choice of architecture heavily influences their interpretability, efficiency, and generalization. In contrast, Gaussian processes (GPs) are nonparametric probabilistic models that define distributions over functions using a kernel to capture correlations among data points. However, these models become computationally expensive for large-scale problems, as they require inverting a large covariance matrix. Kolmogorov- Arnold networks (KANs), semi-parametric neural architectures, have emerged as a prominent approach for modeling complex functions with structured and efficient representations through spline layers. Kurkova Kolmogorov-Arnold networks (KKANs) extend this idea by reducing the number of spline layers in KAN and replacing them with Chebyshev layers and multi-layer perceptrons, thereby mapping inputs into higher-dimensional spaces before applying spline-based transformations. Compared to KANs, KKANs perform more stable convergence during training, making them a strong architecture for estimating operators and system modeling in dynamical systems. By enhancing the KKAN architecture, we develop a novel learning algorithm, distance-aware error for Kurkova-Kolmogorov networks (K-DAREK), for efficient and interpretable function approximation with uncertainty quantification. Our approach establishes robust error bounds that are distance-aware; this means they reflect the proximity of a test point to its nearest training points. Through case studies on a safe control task, we demonstrate that K-DAREK is about four times faster and ten times higher computationally efficiency than Ensemble of KANs, 8.6 times more scalable than GP by increasing the data size, and 50% safer than our previous work distance-aware error for Kolmogorov networks (DAREK).

Country of Origin
🇺🇸 United States

Repos / Data Links

Page Count
9 pages

Category
Computer Science:
Machine Learning (CS)