Score: 1

The Reasoning Trap: How Enhancing LLM Reasoning Amplifies Tool Hallucination

Published: October 27, 2025 | arXiv ID: 2510.22977v1

By: Chenlong Yin , Zeyang Sha , Shiwen Cui and more

Potential Business Impact:

Makes AI smarter, but it makes more mistakes.

Business Areas:
Augmented Reality Hardware, Software

Enhancing the reasoning capabilities of Large Language Models (LLMs) is a key strategy for building Agents that "think then act." However, recent observations, like OpenAI's o3, suggest a paradox: stronger reasoning often coincides with increased hallucination, yet no prior work has systematically examined whether reasoning enhancement itself causes tool hallucination. To address this gap, we pose the central question: Does strengthening reasoning increase tool hallucination? To answer this, we introduce SimpleToolHalluBench, a diagnostic benchmark measuring tool hallucination in two failure modes: (i) no tool available, and (ii) only distractor tools available. Through controlled experiments, we establish three key findings. First, we demonstrate a causal relationship: progressively enhancing reasoning through RL increases tool hallucination proportionally with task performance gains. Second, this effect transcends overfitting - training on non-tool tasks (e.g., mathematics) still amplifies subsequent tool hallucination. Third, the effect is method-agnostic, appearing when reasoning is instilled via supervised fine-tuning and when it is merely elicited at inference by switching from direct answers to step-by-step thinking. We also evaluate mitigation strategies including Prompt Engineering and Direct Preference Optimization (DPO), revealing a fundamental reliability-capability trade-off: reducing hallucination consistently degrades utility. Mechanistically, Reasoning RL disproportionately collapses tool-reliability-related representations, and hallucinations surface as amplified divergences concentrated in late-layer residual streams. These findings reveal that current reasoning enhancement methods inherently amplify tool hallucination, highlighting the need for new training objectives that jointly optimize for capability and reliability.

Page Count
18 pages

Category
Computer Science:
Machine Learning (CS)