Score: 1

ZeroFlood: A Geospatial Foundation Model for Data-Efficient Flood Susceptibility Mapping

Published: October 27, 2025 | arXiv ID: 2510.23364v1

By: Hyeongkyun Kim, Orestis Oikonomou

Potential Business Impact:

Predicts floods using only satellite pictures.

Business Areas:
Geospatial Data and Analytics, Navigation and Mapping

Flood susceptibility mapping (FSM) is vital for disaster prevention but remains challenging in data-scarce regions where hydrodynamic models require dense geophysical inputs. This work introduces ZeroFlood, a geospatial foundation model framework for data-efficient FSM. The approach fine-tunes Geospatial Foundation Models (GFMs) with Thinking-in-Modality (TiM) reasoning, enabling flood prediction from basic Earth observation data such as Sentinel-1 or Sentinel-2 imagery. Using paired EO and simulated flood maps from data-rich regions, ZeroFlood bridges data availability gaps through cross-modal representation learning. Experiments with TerraMind and Prithvi GFMs show that TiM enhances model robustness, with the TerraMind-Large configuration achieving an F1 score of 67.21. The results demonstrate the feasibility of foundation-model-based FSM as a scalable and data-efficient solution for flood risk management.

Repos / Data Links

Page Count
6 pages

Category
Computer Science:
Machine Learning (CS)