Score: 0

The Neural Differential Manifold: An Architecture with Explicit Geometric Structure

Published: October 29, 2025 | arXiv ID: 2510.25113v1

By: Di Zhang

Potential Business Impact:

Teaches computers to learn with better understanding.

Business Areas:
Geospatial Data and Analytics, Navigation and Mapping

This paper introduces the Neural Differential Manifold (NDM), a novel neural network architecture that explicitly incorporates geometric structure into its fundamental design. Departing from conventional Euclidean parameter spaces, the NDM re-conceptualizes a neural network as a differentiable manifold where each layer functions as a local coordinate chart, and the network parameters directly parameterize a Riemannian metric tensor at every point. The architecture is organized into three synergistic layers: a Coordinate Layer implementing smooth chart transitions via invertible transformations inspired by normalizing flows, a Geometric Layer that dynamically generates the manifold's metric through auxiliary sub-networks, and an Evolution Layer that optimizes both task performance and geometric simplicity through a dual-objective loss function. This geometric regularization penalizes excessive curvature and volume distortion, providing intrinsic regularization that enhances generalization and robustness. The framework enables natural gradient descent optimization aligned with the learned manifold geometry and offers unprecedented interpretability by endowing internal representations with clear geometric meaning. We analyze the theoretical advantages of this approach, including its potential for more efficient optimization, enhanced continual learning, and applications in scientific discovery and controllable generative modeling. While significant computational challenges remain, the Neural Differential Manifold represents a fundamental shift towards geometrically structured, interpretable, and efficient deep learning systems.

Country of Origin
🇨🇳 China

Page Count
9 pages

Category
Computer Science:
Machine Learning (CS)