Score: 0

Shared Control for Vehicle Lane-Changing with Uncertain Driver Behaviors

Published: October 29, 2025 | arXiv ID: 2510.25284v1

By: Jiamin Wu, Chenguang Zhao, Huan Yu

Potential Business Impact:

Helps cars change lanes safely with driver help.

Business Areas:
Autonomous Vehicles Transportation

Lane changes are common yet challenging driving maneuvers that require continuous decision-making and dynamic interaction with surrounding vehicles. Relying solely on human drivers for lane-changing can lead to traffic disturbances due to the stochastic nature of human behavior and its variability under different task demands. Such uncertainties may significantly degrade traffic string stability, which is critical for suppressing disturbance propagation and ensuring smooth merging of the lane-changing vehicles. This paper presents a human-automation shared lane-changing control framework that preserves driver authority while allowing automated assistance to achieve stable maneuvers in the presence of driver's behavioral uncertainty. Human driving behavior is modeled as a Markov jump process with transitions driven by task difficulty, providing a tractable representation of stochastic state switching. Based on this model, we first design a nominal stabilizing controller that guarantees stochastic ${L}_2$ string stability under imperfect mode estimation. To further balance performance and automated effort, we then develop a Minimal Intervention Controller (MIC) that retains acceptable stability while limiting automation. Simulations using lane-changing data from the NGSIM dataset verify that the nominal controller reduces speed perturbations and shorten lane-changing time, while the MIC further reduces automated effort and enhances comfort but with moderate stability and efficiency loss. Validations on the TGSIM dataset with SAE Level 2 vehicles show that the MIC enables earlier lane changes than Level 2 control while preserving driver authority with a slight stability compromise. These findings highlight the potential of shared control strategies to balance stability, efficiency, and driver acceptance.

Country of Origin
🇭🇰 Hong Kong

Page Count
22 pages

Category
Electrical Engineering and Systems Science:
Systems and Control