Prompt Estimation from Prototypes for Federated Prompt Tuning of Vision Transformers
By: M Yashwanth , Sharannya Ghosh , Aditay Tripathi and more
Potential Business Impact:
Helps AI learn from many different pictures.
Visual Prompt Tuning (VPT) of pre-trained Vision Transformers (ViTs) has proven highly effective as a parameter-efficient fine-tuning technique for adapting large models to downstream tasks with limited data. Its parameter efficiency makes it particularly suitable for Federated Learning (FL), where both communication and computation budgets are often constrained. However, global prompt tuning struggles to generalize across heterogeneous clients, while personalized tuning overfits to local data and lacks generalization. We propose PEP-FedPT (Prompt Estimation from Prototypes for Federated Prompt Tuning), a unified framework designed to achieve both generalization and personalization in federated prompt tuning of ViTs. Within this framework, we introduce the novel Class-Contextualized Mixed Prompt (CCMP) - based on class-specific prompts maintained alongside a globally shared prompt. For each input, CCMP adaptively combines class-specific prompts using weights derived from global class prototypes and client class priors. This approach enables per-sample prompt personalization without storing client-dependent trainable parameters. The prompts are collaboratively optimized via traditional federated averaging technique on the same. Comprehensive evaluations on CIFAR-100, TinyImageNet, DomainNet, and iNaturalist datasets demonstrate that PEP-FedPT consistently surpasses the state-of-the-art baselines under diverse data heterogeneity scenarios, establishing a strong foundation for efficient and generalizable federated prompt tuning of Vision Transformers.
Similar Papers
Prompt-based Adaptation in Large-scale Vision Models: A Survey
CV and Pattern Recognition
Helps computers learn new things with less data.
FedAPT: Federated Adversarial Prompt Tuning for Vision-Language Models
CV and Pattern Recognition
Protects AI from fake images that trick it.
FedMVP: Federated Multimodal Visual Prompt Tuning for Vision-Language Models
CV and Pattern Recognition
Teaches AI to learn new things better.