Score: 0

Evaluating Learning Congestion control Schemes for LEO Constellations

Published: October 29, 2025 | arXiv ID: 2510.25498v1

By: Mihai Mazilu, Aiden Valentine, George Parisis

Potential Business Impact:

Fixes internet speed for satellites in space.

Business Areas:
Satellite Communication Hardware

Low Earth Orbit (LEO) satellite networks introduce unique congestion control (CC) challenges due to frequent handovers, rapidly changing round-trip times (RTTs), and non-congestive loss. This paper presents the first comprehensive, emulation-driven evaluation of CC schemes in LEO networks, combining realistic orbital dynamics via the LeoEM framework with targeted Mininet micro-benchmarks. We evaluated representative CC algorithms from three classes, loss-based (Cubic, SaTCP), model-based (BBRv3), and learning-based (Vivace, Sage, Astraea), across diverse single-flow and multi-flow scenarios, including interactions with active queue management (AQM). Our findings reveal that: (1) handover-aware loss-based schemes can reclaim bandwidth but at the cost of increased latency; (2) BBRv3 sustains high throughput with modest delay penalties, yet reacts slowly to abrupt RTT changes; (3) RL-based schemes severely underperform under dynamic conditions, despite being notably resistant to non-congestive loss; (4) fairness degrades significantly with RTT asymmetry and multiple bottlenecks, especially in human-designed CC schemes; and (5) AQM at bottlenecks can restore fairness and boost efficiency. These results expose critical limitations in current CC schemes and provide insight for designing LEO-specific data transport protocols.

Country of Origin
🇬🇧 United Kingdom

Page Count
10 pages

Category
Computer Science:
Networking and Internet Architecture