Score: 1

Gradient Flow Sampler-based Distributionally Robust Optimization

Published: October 29, 2025 | arXiv ID: 2510.25956v1

By: Zusen Xu, Jia-Jie Zhu

Potential Business Impact:

Finds the best way to make smart choices.

Business Areas:
A/B Testing Data and Analytics

We propose a mathematically principled PDE gradient flow framework for distributionally robust optimization (DRO). Exploiting the recent advances in the intersection of Markov Chain Monte Carlo sampling and gradient flow theory, we show that our theoretical framework can be implemented as practical algorithms for sampling from worst-case distributions and, consequently, DRO. While numerous previous works have proposed various reformulation techniques and iterative algorithms, we contribute a sound gradient flow view of the distributional optimization that can be used to construct new algorithms. As an example of applications, we solve a class of Wasserstein and Sinkhorn DRO problems using the recently-discovered Wasserstein Fisher-Rao and Stein variational gradient flows. Notably, we also show some simple reductions of our framework recover exactly previously proposed popular DRO methods, and provide new insights into their theoretical limit and optimization dynamics. Numerical studies based on stochastic gradient descent provide empirical backing for our theoretical findings.

Repos / Data Links

Page Count
23 pages

Category
Mathematics:
Optimization and Control