Score: 2

Reasoning Path Divergence: A New Metric and Curation Strategy to Unlock LLM Diverse Thinking

Published: October 30, 2025 | arXiv ID: 2510.26122v1

By: Feng Ju , Zeyu Qin , Rui Min and more

Potential Business Impact:

Teaches computers many ways to solve one problem.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

While Test-Time Scaling (TTS) has proven effective in improving the reasoning ability of large language models (LLMs), low diversity in model outputs often becomes a bottleneck; this is partly caused by the common "one problem, one solution" (1P1S) training practice, which provides a single canonical answer and can push models toward a narrow set of reasoning paths. To address this, we propose a "one problem, multiple solutions" (1PNS) training paradigm that exposes the model to a variety of valid reasoning trajectories and thus increases inference diversity. A core challenge for 1PNS is reliably measuring semantic differences between multi-step chains of thought, so we introduce Reasoning Path Divergence (RPD), a step-level metric that aligns and scores Long Chain-of-Thought solutions to capture differences in intermediate reasoning. Using RPD, we curate maximally diverse solution sets per problem and fine-tune Qwen3-4B-Base. Experiments show that RPD-selected training yields more varied outputs and higher pass@k, with an average +2.80% gain in pass@16 over a strong 1P1S baseline and a +4.99% gain on AIME24, demonstrating that 1PNS further amplifies the effectiveness of TTS. Our code is available at https://github.com/fengjujf/Reasoning-Path-Divergence .


Page Count
40 pages

Category
Computer Science:
Computation and Language