Cross-Platform Evaluation of Reasoning Capabilities in Foundation Models
By: J. de Curtò , I. de Zarzà , Pablo García and more
Potential Business Impact:
Tests how well AI solves hard school problems.
This paper presents a comprehensive cross-platform evaluation of reasoning capabilities in contemporary foundation models, establishing an infrastructure-agnostic benchmark across three computational paradigms: HPC supercomputing (MareNostrum 5), cloud platforms (Nebius AI Studio), and university clusters (a node with eight H200 GPUs). We evaluate 15 foundation models across 79 problems spanning eight academic domains (Physics, Mathematics, Chemistry, Economics, Biology, Statistics, Calculus, and Optimization) through three experimental phases: (1) Baseline establishment: Six models (Mixtral-8x7B, Phi-3, LLaMA 3.1-8B, Gemma-2-9b, Mistral-7B, OLMo-7B) evaluated on 19 problems using MareNostrum 5, establishing methodology and reference performance; (2) Infrastructure validation: The 19-problem benchmark repeated on university cluster (seven models including Falcon-Mamba state-space architecture) and Nebius AI Studio (nine state-of-the-art models: Hermes-4 70B/405B, LLaMA 3.1-405B/3.3-70B, Qwen3 30B/235B, DeepSeek-R1, GPT-OSS 20B/120B) to confirm infrastructure-agnostic reproducibility; (3) Extended evaluation: Full 79-problem assessment on both university cluster and Nebius platforms, probing generalization at scale across architectural diversity. The findings challenge conventional scaling assumptions, establish training data quality as more critical than model size, and provide actionable guidelines for model selection across educational, production, and research contexts. The tri-infrastructure methodology and 79-problem benchmark enable longitudinal tracking of reasoning capabilities as foundation models evolve.
Similar Papers
Evaluating Mathematical Reasoning Across Large Language Models: A Fine-Grained Approach
Machine Learning (CS)
Makes AI better at solving math problems.
Benchmarking Reasoning Reliability in Artificial Intelligence Models for Energy-System Analysis
Artificial Intelligence
Checks if AI makes good energy decisions.
Large Language Models Imitate Logical Reasoning, but at what Cost?
Artificial Intelligence
Makes AI think better and cost less.