Score: 0

Cut-free Deductive System for Continuous Intuitionistic Logic

Published: October 30, 2025 | arXiv ID: 2510.26849v1

By: Guillaume Geoffroy

Potential Business Impact:

Makes computers understand logic better.

Business Areas:
Intelligent Systems Artificial Intelligence, Data and Analytics, Science and Engineering

We introduce and develop propositional continuous intuitionistic logic and propositional continuous affine logic via complete algebraic semantics. Our approach centres on AC-algebras, which are algebras $USC(\mathcal{L})$ of sup-preserving functions from $[0,1]$ to an integral commutative residuated complete lattice $\mathcal{L}$ (in the intuitionistic case, $\mathcal{L}$ is a locale). We give an algebraic axiomatisation of AC-algebras in the language of continuous logic and prove, using the Macneille completion, that every Archimedean model embeds into some AC-algebra. We also show that (i) $USC(\mathcal{L})$ satisfies $v \dot + v = 2v$ exactly when $\mathcal{L}$ is a locale, (ii) involutiveness of negation in $USC(\mathcal{L})$ corresponds to that in $\mathcal{L} $, and that (iii) adding those conditions recovers classical continuous logic. For each variant -affine, intuitionistic, involutive, classical -we provide a sequent style deductive system and prove completeness and cut admissibility. This yields the first sequent style formulation of classical continuous logic enjoying cut admissibility.

Page Count
72 pages

Category
Computer Science:
Logic in Computer Science