Spiking Neural Networks: The Future of Brain-Inspired Computing
By: Sales G. Aribe Jr
Potential Business Impact:
Makes computers use less power to think.
Spiking Neural Networks (SNNs) represent the latest generation of neural computation, offering a brain-inspired alternative to conventional Artificial Neural Networks (ANNs). Unlike ANNs, which depend on continuous-valued signals, SNNs operate using distinct spike events, making them inherently more energy-efficient and temporally dynamic. This study presents a comprehensive analysis of SNN design models, training algorithms, and multi-dimensional performance metrics, including accuracy, energy consumption, latency, spike count, and convergence behavior. Key neuron models such as the Leaky Integrate-and-Fire (LIF) and training strategies, including surrogate gradient descent, ANN-to-SNN conversion, and Spike-Timing Dependent Plasticity (STDP), are examined in depth. Results show that surrogate gradient-trained SNNs closely approximate ANN accuracy (within 1-2%), with faster convergence by the 20th epoch and latency as low as 10 milliseconds. Converted SNNs also achieve competitive performance but require higher spike counts and longer simulation windows. STDP-based SNNs, though slower to converge, exhibit the lowest spike counts and energy consumption (as low as 5 millijoules per inference), making them optimal for unsupervised and low-power tasks. These findings reinforce the suitability of SNNs for energy-constrained, latency-sensitive, and adaptive applications such as robotics, neuromorphic vision, and edge AI systems. While promising, challenges persist in hardware standardization and scalable training. This study concludes that SNNs, with further refinement, are poised to propel the next phase of neuromorphic computing.
Similar Papers
Spiking Neural Networks: a theoretical framework for Universal Approximation and training
Optimization and Control
Makes brain-like computers learn and work better.
All in one timestep: Enhancing Sparsity and Energy efficiency in Multi-level Spiking Neural Networks
Neural and Evolutionary Computing
Makes computer brains use less power for thinking.
Learning Neuron Dynamics within Deep Spiking Neural Networks
Neural and Evolutionary Computing
Computers learn to see better with smarter brain-like chips.