Score: 1

BARD: budget-aware reasoning distillation

Published: November 3, 2025 | arXiv ID: 2511.01470v1

By: Lujie Niu , Lei Shen , Yi Jiang and more

Potential Business Impact:

Teaches AI to think clearly, but faster.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

While long Chain-of-Thought (CoT) distillation effectively transfers reasoning capability to smaller language models, the reasoning process often remains redundant and computational budget uncontrollable, leading to inefficient resource usage. To address this limitation, we propose \textbf{Budget-Aware Reasoning Distillation (BARD)}, a novel framework that simultaneously distills reasoning capability and enables fine-grained control over the reasoning length. BARD uses the thinking budget as a user-specified control signal, allowing the model to dynamically balance reasoning performance and computational efficiency. To achieve this concept, BARD introduces a two-phase training regimen. The first phase, Supervised Fine-Tuning (SFT) on teacher-generated long CoT data compressed to various budget levels, bootstrapping the model's understanding of budget constraints. The second phase leverages Reinforcement Learning (RL) from a reward signal in consideration of reasoning performance and budget fidelity simultaneously. Incorporating the two-phase regimen is crucial to avoiding policy degradation and ensuring that both objectives are optimized jointly. Extensive experiments demonstrate that our method empowers an 8B student model to achieve strong performance on challenging reasoning benchmarks (\textit{AIME24, AIME25, GPQA}) while providing precise and adaptive control over its reasoning length across a wide range of budgets.

Page Count
11 pages

Category
Computer Science:
Computation and Language