Progressive Translation of H&E to IHC with Enhanced Structural Fidelity
By: Yuhang Kang , Ziyu Su , Tianyang Wang and more
Potential Business Impact:
Makes cheap tissue scans look like expensive ones.
Compared to hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC) not only maintains the structural features of tissue samples, but also provides high-resolution protein localization, which is essential for aiding in pathology diagnosis. Despite its diagnostic value, IHC remains a costly and labor-intensive technique. Its limited scalability and constraints in multiplexing further hinder widespread adoption, especially in resource-limited settings. Consequently, researchers are increasingly exploring computational stain translation techniques to synthesize IHC-equivalent images from H&E-stained slides, aiming to extract protein-level information more efficiently and cost-effectively. However, most existing stain translation techniques rely on a linearly weighted summation of multiple loss terms within a single objective function, strategy that often overlooks the interdepedence among these components-resulting in suboptimal image quality and an inability to simultaneously preserve structural authenticity and color fidelity. To address this limitation, we propose a novel network architecture that follows a progressive structure, incorporating color and cell border generation logic, which enables each visual aspect to be optimized in a stage-wise and decoupled manner. To validate the effectiveness of our proposed network architecture, we build upon the Adaptive Supervised PatchNCE (ASP) framework as our baseline. We introduce additional loss functions based on 3,3'-diaminobenzidine (DAB) chromogen concentration and image gradient, enhancing color fidelity and cell boundary clarity in the generated IHC images. By reconstructing the generation pipeline using our structure-color-cell boundary progressive mechanism, experiments on HER2 and ER datasets demonstrated that the model significantly improved visual quality and achieved finer structural details.
Similar Papers
Cross-Modality Learning for Predicting IHC Biomarkers from H&E-Stained Whole-Slide Images
Image and Video Processing
Predicts cancer protein spots from regular tissue pictures.
ImplicitStainer: Data-Efficient Medical Image Translation for Virtual Antibody-based Tissue Staining Using Local Implicit Functions
Image and Video Processing
Makes doctors see hidden cell details from regular pictures.
From Pixels to Pathology: Restoration Diffusion for Diagnostic-Consistent Virtual IHC
Image and Video Processing
Makes regular tissue scans show cancer details.