Colorectal Cancer Histopathological Grading using Multi-Scale Federated Learning
By: Md Ahasanul Arafath , Abhijit Kumar Ghosh , Md Rony Ahmed and more
Potential Business Impact:
Helps doctors grade cancer more accurately, privately.
Colorectal cancer (CRC) grading is a critical prognostic factor but remains hampered by inter-observer variability and the privacy constraints of multi-institutional data sharing. While deep learning offers a path to automation, centralized training models conflict with data governance regulations and neglect the diagnostic importance of multi-scale analysis. In this work, we propose a scalable, privacy-preserving federated learning (FL) framework for CRC histopathological grading that integrates multi-scale feature learning within a distributed training paradigm. Our approach employs a dual-stream ResNetRS50 backbone to concurrently capture fine-grained nuclear detail and broader tissue-level context. This architecture is integrated into a robust FL system stabilized using FedProx to mitigate client drift across heterogeneous data distributions from multiple hospitals. Extensive evaluation on the CRC-HGD dataset demonstrates that our framework achieves an overall accuracy of 83.5%, outperforming a comparable centralized model (81.6%). Crucially, the system excels in identifying the most aggressive Grade III tumors with a high recall of 87.5%, a key clinical priority to prevent dangerous false negatives. Performance further improves with higher magnification, reaching 88.0% accuracy at 40x. These results validate that our federated multi-scale approach not only preserves patient privacy but also enhances model performance and generalization. The proposed modular pipeline, with built-in preprocessing, checkpointing, and error handling, establishes a foundational step toward deployable, privacy-aware clinical AI for digital pathology.
Similar Papers
Colorectal Cancer Tumor Grade Segmentation in Digital Histopathology Images: From Giga to Mini Challenge
CV and Pattern Recognition
Helps doctors grade cancer faster and more accurately.
Multi-Scale Deep Learning for Colon Histopathology: A Hybrid Graph-Transformer Approach
CV and Pattern Recognition
Finds colon cancer from pictures faster and better.
A Multi-Modal Deep Learning Framework for Colorectal Pathology Diagnosis: Integrating Histological and Colonoscopy Data in a Pilot Study
CV and Pattern Recognition
Helps doctors find gut diseases faster.