Deep Learning-Driven Downscaling for Climate Risk Assessment of Projected Temperature Extremes in the Nordic Region
By: Parthiban Loganathan , Elias Zea , Ricardo Vinuesa and more
Potential Business Impact:
Predicts exact future temperatures for planning.
Rapid changes and increasing climatic variability across the widely varied Koppen-Geiger regions of northern Europe generate significant needs for adaptation. Regional planning needs high-resolution projected temperatures. This work presents an integrative downscaling framework that incorporates Vision Transformer (ViT), Convolutional Long Short-Term Memory (ConvLSTM), and Geospatial Spatiotemporal Transformer with Attention and Imbalance-Aware Network (GeoStaNet) models. The framework is evaluated with a multicriteria decision system, Deep Learning-TOPSIS (DL-TOPSIS), for ten strategically chosen meteorological stations encompassing the temperate oceanic (Cfb), subpolar oceanic (Cfc), warm-summer continental (Dfb), and subarctic (Dfc) climate regions. Norwegian Earth System Model (NorESM2-LM) Coupled Model Intercomparison Project Phase 6 (CMIP6) outputs were bias-corrected during the 1951-2014 period and subsequently validated against earlier observations of day-to-day temperature metrics and diurnal range statistics. The ViT showed improved performance (Root Mean Squared Error (RMSE): 1.01 degrees C; R^2: 0.92), allowing for production of credible downscaled projections. Under the SSP5-8.5 scenario, the Dfc and Dfb climate zones are projected to warm by 4.8 degrees C and 3.9 degrees C, respectively, by 2100, with expansion in the diurnal temperature range by more than 1.5 degrees C. The Time of Emergence signal first appears in subarctic winter seasons (Dfc: approximately 2032), signifying an urgent need for adaptation measures. The presented framework offers station-based, high-resolution estimates of uncertainties and extremes, with direct uses for adaptation policy over high-latitude regions with fast environmental change.
Similar Papers
Domain-aligned generative downscaling enhances projections of extreme climate events
Atmospheric and Oceanic Physics
Predicts extreme weather more accurately.
On Global Applicability and Location Transferability of Generative Deep Learning Models for Precipitation Downscaling
Machine Learning (CS)
Makes weather forecasts work everywhere.
A Probabilistic U-Net Approach to Downscaling Climate Simulations
Machine Learning (CS)
Makes climate predictions more detailed and accurate.