Score: 0

Deep Learning-Driven Downscaling for Climate Risk Assessment of Projected Temperature Extremes in the Nordic Region

Published: November 5, 2025 | arXiv ID: 2511.03770v1

By: Parthiban Loganathan , Elias Zea , Ricardo Vinuesa and more

Potential Business Impact:

Predicts exact future temperatures for planning.

Business Areas:
Geospatial Data and Analytics, Navigation and Mapping

Rapid changes and increasing climatic variability across the widely varied Koppen-Geiger regions of northern Europe generate significant needs for adaptation. Regional planning needs high-resolution projected temperatures. This work presents an integrative downscaling framework that incorporates Vision Transformer (ViT), Convolutional Long Short-Term Memory (ConvLSTM), and Geospatial Spatiotemporal Transformer with Attention and Imbalance-Aware Network (GeoStaNet) models. The framework is evaluated with a multicriteria decision system, Deep Learning-TOPSIS (DL-TOPSIS), for ten strategically chosen meteorological stations encompassing the temperate oceanic (Cfb), subpolar oceanic (Cfc), warm-summer continental (Dfb), and subarctic (Dfc) climate regions. Norwegian Earth System Model (NorESM2-LM) Coupled Model Intercomparison Project Phase 6 (CMIP6) outputs were bias-corrected during the 1951-2014 period and subsequently validated against earlier observations of day-to-day temperature metrics and diurnal range statistics. The ViT showed improved performance (Root Mean Squared Error (RMSE): 1.01 degrees C; R^2: 0.92), allowing for production of credible downscaled projections. Under the SSP5-8.5 scenario, the Dfc and Dfb climate zones are projected to warm by 4.8 degrees C and 3.9 degrees C, respectively, by 2100, with expansion in the diurnal temperature range by more than 1.5 degrees C. The Time of Emergence signal first appears in subarctic winter seasons (Dfc: approximately 2032), signifying an urgent need for adaptation measures. The presented framework offers station-based, high-resolution estimates of uncertainties and extremes, with direct uses for adaptation policy over high-latitude regions with fast environmental change.

Country of Origin
πŸ‡ΈπŸ‡ͺ Sweden

Page Count
23 pages

Category
Physics:
Geophysics