The Algorithmic Phase Transition in Symmetric Correlated Spiked Wigner Model
By: Zhangsong Li
Potential Business Impact:
Find hidden patterns in noisy data using two sources.
We study the computational task of detecting and estimating correlated signals in a pair of spiked Wigner matrices. Our model consists of observations $$ X = \tfracλ{\sqrt{n}} xx^{\top} + W \,, \quad Y = \tfracμ{\sqrt{n}} yy^{\top} + Z \,. $$ where $x,y \in \mathbb R^n$ are signal vectors with norm $\|x\|,\|y\| \approx\sqrt{n}$ and correlation $\langle x,y \rangle \approx ρ\|x\|\|y\|$, while $W,Z$ are independent Gaussian Wigner matrices. We propose an efficient algorithm that succeeds whenever $F(λ,μ,ρ)>1$, where $$ F(λ,μ,ρ)=\max\Big\{ λ,μ, \frac{ λ^2 ρ^2 }{ 1-λ^2+λ^2 ρ^2 } + \frac{ μ^2 ρ^2 }{ 1-μ^2+μ^2 ρ^2 } \Big\} \,. $$ Our result shows that an algorithm can leverage the correlation between the spikes to detect and estimate the signals even in regimes where efficiently recovering either $x$ from $X$ alone or $y$ from $Y$ alone is believed to be computationally infeasible. We complement our algorithmic result with evidence for a matching computational lower bound. In particular, we prove that when $F(λ,μ,ρ)<1$, all algorithms based on {\em low-degree polynomials} fails to distinguish $(X,Y)$ with two independent Wigner matrices. This low-degree analysis strongly suggests that $F(λ,μ,ρ)=1$ is the precise computation threshold for this problem.
Similar Papers
The Algorithmic Phase Transition in Symmetric Correlated Spiked Wigner Model
Statistics Theory
Find hidden patterns in noisy data using two sources.
Computational and statistical lower bounds for low-rank estimation under general inhomogeneous noise
Statistics Theory
Find hidden patterns even in messy data.
Statistical Limits in Random Tensors with Multiple Correlated Spikes
Statistics Theory
Finds hidden patterns in complex data better.