Score: 1

Active Learning for Animal Re-Identification with Ambiguity-Aware Sampling

Published: November 10, 2025 | arXiv ID: 2511.06658v1

By: Depanshu Sani, Mehar Khurana, Saket Anand

Potential Business Impact:

Identifies animals in photos with less effort.

Business Areas:
Image Recognition Data and Analytics, Software

Animal Re-ID has recently gained substantial attention in the AI research community due to its high impact on biodiversity monitoring and unique research challenges arising from environmental factors. The subtle distinguishing patterns, handling new species and the inherent open-set nature make the problem even harder. To address these complexities, foundation models trained on labeled, large-scale and multi-species animal Re-ID datasets have recently been introduced to enable zero-shot Re-ID. However, our benchmarking reveals significant gaps in their zero-shot Re-ID performance for both known and unknown species. While this highlights the need for collecting labeled data in new domains, exhaustive annotation for Re-ID is laborious and requires domain expertise. Our analyses show that existing unsupervised (USL) and AL Re-ID methods underperform for animal Re-ID. To address these limitations, we introduce a novel AL Re-ID framework that leverages complementary clustering methods to uncover and target structurally ambiguous regions in the embedding space for mining pairs of samples that are both informative and broadly representative. Oracle feedback on these pairs, in the form of must-link and cannot-link constraints, facilitates a simple annotation interface, which naturally integrates with existing USL methods through our proposed constrained clustering refinement algorithm. Through extensive experiments, we demonstrate that, by utilizing only 0.033% of all annotations, our approach consistently outperforms existing foundational, USL and AL baselines. Specifically, we report an average improvement of 10.49%, 11.19% and 3.99% (mAP) on 13 wildlife datasets over foundational, USL and AL methods, respectively, while attaining state-of-the-art performance on each dataset. Furthermore, we also show an improvement of 11.09%, 8.2% and 2.06% for unknown individuals in an open-world setting.

Country of Origin
🇮🇳 India

Page Count
10 pages

Category
Computer Science:
CV and Pattern Recognition