Score: 0

Image Restoration via Primal Dual Hybrid Gradient and Flow Generative Model

Published: November 10, 2025 | arXiv ID: 2511.06748v1

By: Ji Li, Chao Wang

Potential Business Impact:

Cleans up blurry or noisy pictures better.

Business Areas:
A/B Testing Data and Analytics

Regularized optimization has been a classical approach to solving imaging inverse problems, where the regularization term enforces desirable properties of the unknown image. Recently, the integration of flow matching generative models into image restoration has garnered significant attention, owing to their powerful prior modeling capabilities. In this work, we incorporate such generative priors into a Plug-and-Play (PnP) framework based on proximal splitting, where the proximal operator associated with the regularizer is replaced by a time-dependent denoiser derived from the generative model. While existing PnP methods have achieved notable success in inverse problems with smooth squared $\ell_2$ data fidelity--typically associated with Gaussian noise--their applicability to more general data fidelity terms remains underexplored. To address this, we propose a general and efficient PnP algorithm inspired by the primal-dual hybrid gradient (PDHG) method. Our approach is computationally efficient, memory-friendly, and accommodates a wide range of fidelity terms. In particular, it supports both $\ell_1$ and $\ell_2$ norm-based losses, enabling robustness to non-Gaussian noise types such as Poisson and impulse noise. We validate our method on several image restoration tasks, including denoising, super-resolution, deblurring, and inpainting, and demonstrate that $\ell_1$ and $\ell_2$ fidelity terms outperform the conventional squared $\ell_2$ loss in the presence of non-Gaussian noise.

Page Count
13 pages

Category
Computer Science:
CV and Pattern Recognition