Score: 1

Model Counting for Dependency Quantified Boolean Formulas

Published: November 10, 2025 | arXiv ID: 2511.07337v1

By: Long-Hin Fung , Che Cheng , Jie-Hong Roland Jiang and more

Potential Business Impact:

Counts answers for complex logic puzzles.

Business Areas:
Quantum Computing Science and Engineering

Dependency Quantified Boolean Formulas (DQBF) generalize QBF by explicitly specifying which universal variables each existential variable depends on, instead of relying on a linear quantifier order. The satisfiability problem of DQBF is NEXP-complete, and many hard problems can be succinctly encoded as DQBF. Recent work has revealed a strong analogy between DQBF and SAT: k-DQBF (with k existential variables) is a succinct form of k-SAT, and satisfiability is NEXP-complete for 3-DQBF but PSPACE-complete for 2-DQBF, mirroring the complexity gap between 3-SAT (NP-complete) and 2-SAT (NL-complete). Motivated by this analogy, we study the model counting problem for DQBF, denoted #DQBF. Our main theoretical result is that #2-DQBF is #EXP-complete, where #EXP is the exponential-time analogue of #P. This parallels Valiant's classical theorem stating that #2-SAT is #P-complete. As a direct application, we show that first-order model counting (FOMC) remains #EXP-complete even when restricted to a PSPACE-decidable fragment of first-order logic and domain size two. Building on recent successes in reducing 2-DQBF satisfiability to symbolic model checking, we develop a dedicated 2-DQBF model counter. Using a diverse set of crafted instances, we experimentally evaluated it against a baseline that expands 2-DQBF formulas into propositional formulas and applies propositional model counting. While the baseline worked well when each existential variable depends on few variables, our implementation scaled significantly better to larger dependency sets.

Country of Origin
🇹🇼 Taiwan, Province of China

Repos / Data Links

Page Count
17 pages

Category
Computer Science:
Logic in Computer Science