CNN-Based Automated Parameter Extraction Framework for Modeling Memristive Devices
By: Akif Hamid, Orchi Hassan
Potential Business Impact:
Makes computer memory faster and easier to design.
Resistive random access memory (RRAM) is a promising candidate for next-generation nonvolatile memory (NVM) and in-memory computing applications. Compact models are essential for analyzing the circuit and system-level performance of experimental RRAM devices. However, most existing RRAM compact models rely on multiple fitting parameters to reproduce the device I-V characteristics, and in most cases, as the parameters are not directly related to measurable quantities, their extraction requires extensive manual tuning, making the process time-consuming and limiting adaptability across different devices. This work presents an automated framework for extracting the fitting parameters of the widely used Stanford RRAM model directly from the device I-V characteristics. The framework employs a convolutional neural network (CNN) trained on a synthetic dataset to generate initial parameter estimates, which are then refined through three heuristic optimization blocks that minimize errors via adaptive binary search in the parameter space. We evaluated the framework using four key NVM metrics: set voltage, reset voltage, hysteresis loop area, and low resistance state (LRS) slope. Benchmarking against RRAM device characteristics derived from previously reported Stanford model fits, other analytical models, and experimental data shows that the framework achieves low error across diverse device characteristics, offering a fast, reliable, and robust solution for RRAM modeling.
Similar Papers
A Time- and Energy-Efficient CNN with Dense Connections on Memristor-Based Chips
Hardware Architecture
Makes AI chips faster and use less power.
NVM-in-Cache: Repurposing Commodity 6T SRAM Cache into NVM Analog Processing-in-Memory Engine using a Novel Compute-on-Powerline Scheme
Hardware Architecture
Makes computer chips do math inside their memory.
In-memory Training on Analog Devices with Limited Conductance States via Multi-tile Residual Learning
Machine Learning (CS)
Trains AI better with cheaper, simpler computer parts.