Score: 3

USF-Net: A Unified Spatiotemporal Fusion Network for Ground-Based Remote Sensing Cloud Image Sequence Extrapolation

Published: November 12, 2025 | arXiv ID: 2511.09045v1

By: Penghui Niu , Taotao Cai , Jiashuai She and more

Potential Business Impact:

Predicts clouds better for solar power.

Business Areas:
Image Recognition Data and Analytics, Software

Ground-based remote sensing cloud image sequence extrapolation is a key research area in the development of photovoltaic power systems. However, existing approaches exhibit several limitations:(1)they primarily rely on static kernels to augment feature information, lacking adaptive mechanisms to extract features at varying resolutions dynamically;(2)temporal guidance is insufficient, leading to suboptimal modeling of long-range spatiotemporal dependencies; and(3)the quadratic computational cost of attention mechanisms is often overlooked, limiting efficiency in practical deployment. To address these challenges, we propose USF-Net, a Unified Spatiotemporal Fusion Network that integrates adaptive large-kernel convolutions and a low-complexity attention mechanism, combining temporal flow information within an encoder-decoder framework. Specifically, the encoder employs three basic layers to extract features. Followed by the USTM, which comprises:(1)a SiB equipped with a SSM that dynamically captures multi-scale contextual information, and(2)a TiB featuring a TAM that effectively models long-range temporal dependencies while maintaining computational efficiency. In addition, a DSM with a TGM is introduced to enable unified modeling of temporally guided spatiotemporal dependencies. On the decoder side, a DUM is employed to address the common "ghosting effect." It utilizes the initial temporal state as an attention operator to preserve critical motion signatures. As a key contribution, we also introduce and release the ASI-CIS dataset. Extensive experiments on ASI-CIS demonstrate that USF-Net significantly outperforms state-of-the-art methods, establishing a superior balance between prediction accuracy and computational efficiency for ground-based cloud extrapolation. The dataset and source code will be available at https://github.com/she1110/ASI-CIS.

Country of Origin
🇨🇳 🇦🇺 Australia, China

Repos / Data Links

Page Count
18 pages

Category
Computer Science:
CV and Pattern Recognition