Score: 1

On minimum Venn diagrams

Published: November 12, 2025 | arXiv ID: 2511.09230v1

By: Sofia Brenner , Petr Gregor , Torsten Mütze and more

Potential Business Impact:

Makes Venn diagrams with fewer crossing lines.

Business Areas:
A/B Testing Data and Analytics

An $n$-Venn diagram is a diagram in the plane consisting of $n$ simple closed curves that intersect only finitely many times such that each of the $2^n$ possible intersections is represented by a single connected region. An $n$-Venn diagram has at most $2^n-2$ crossings, and if this maximum number of crossings is attained, then only two curves intersect in every crossing. To complement this, Bultena and Ruskey considered $n$-Venn diagrams that minimize the number of crossings, which implies that many curves intersect in every crossing. Specifically, they proved that the total number of crossings in any $n$-Venn diagram is at least $L_n:=\lceil\frac{2^n-2}{n-1}\rceil$, and if this lower bound is attained then essentially all $n$ curves intersect in every crossing. Diagrams achieving this bound are called minimum Venn diagrams, and are known only for $n\leq 7$. Bultena and Ruskey conjectured that they exist for all $n\geq 8$. In this work, we establish an asympototic version of their conjecture. For $n=8$ we construct a diagram with 40 crossings, only 3 more than the lower bound $L_8=37$. Furthermore, for every $n$ of the form $n=2^k$ for some integer $k\geq 4$, we construct an $n$-Venn diagram with at most $(1+\frac{33}{8n})L_n=(1+o(1))L_n$ many crossings. Via a doubling trick this also gives $(n+m)$-Venn diagrams for all $0\leq m<n$ with at most $40\cdot 2^m$ crossings for $n=8$ and at most $(1+\frac{33}{8n})\frac{n+m}{n}L_{n+m}=(2+o(1))L_{n+m}$ many crossings for $k\geq 4$. In particular, we obtain $n$-Venn diagrams with the smallest known number of crossings for all $n\geq 8$. Our constructions are based on partitions of the hypercube into isometric paths and cycles, using a result of Ramras.

Country of Origin
🇨🇿 🇩🇪 Germany, Czech Republic

Page Count
19 pages

Category
Mathematics:
Combinatorics