Score: 1

AutoSynth: Automated Workflow Optimization for High-Quality Synthetic Dataset Generation via Monte Carlo Tree Search

Published: November 12, 2025 | arXiv ID: 2511.09488v1

By: Shuzhen Bi , Chang Song , Siyu Song and more

Potential Business Impact:

Creates smart computer answers without human help.

Business Areas:
Machine Learning Artificial Intelligence, Data and Analytics, Software

Supervised fine-tuning (SFT) of large language models (LLMs) for specialized tasks requires high-quality datasets, but manual curation is prohibitively expensive. Synthetic data generation offers scalability, but its effectiveness relies on complex, multi-stage workflows, integrating prompt engineering and model orchestration. Existing automated workflow methods face a cold start problem: they require labeled datasets for reward modeling, which is especially problematic for subjective, open-ended tasks with no objective ground truth. We introduce AutoSynth, a framework that automates workflow discovery and optimization without reference datasets by reframing the problem as a Monte Carlo Tree Search guided by a novel dataset-free hybrid reward. This reward enables meta-learning through two LLM-as-judge components: one evaluates sample quality using dynamically generated task-specific metrics, and another assesses workflow code and prompt quality. Experiments on subjective educational tasks show that while expert-designed workflows achieve higher human preference rates (96-99% win rates vs. AutoSynth's 40-51%), models trained on AutoSynth-generated data dramatically outperform baselines (40-51% vs. 2-5%) and match or surpass expert workflows on certain metrics, suggesting discovery of quality dimensions beyond human intuition. These results are achieved while reducing human effort from 5-7 hours to just 30 minutes (>90% reduction). AutoSynth tackles the cold start issue in data-centric AI, offering a scalable, cost-effective method for subjective LLM tasks. Code: https://github.com/bisz9918-maker/AutoSynth.

Country of Origin
🇨🇳 China

Repos / Data Links

Page Count
13 pages

Category
Computer Science:
Machine Learning (CS)