Decoupling Bias, Aligning Distributions: Synergistic Fairness Optimization for Deepfake Detection
By: Feng Ding , Wenhui Yi , Yunpeng Zhou and more
Potential Business Impact:
Makes fake video checkers fair for everyone.
Fairness is a core element in the trustworthy deployment of deepfake detection models, especially in the field of digital identity security. Biases in detection models toward different demographic groups, such as gender and race, may lead to systemic misjudgments, exacerbating the digital divide and social inequities. However, current fairness-enhanced detectors often improve fairness at the cost of detection accuracy. To address this challenge, we propose a dual-mechanism collaborative optimization framework. Our proposed method innovatively integrates structural fairness decoupling and global distribution alignment: decoupling channels sensitive to demographic groups at the model architectural level, and subsequently reducing the distance between the overall sample distribution and the distributions corresponding to each demographic group at the feature level. Experimental results demonstrate that, compared with other methods, our framework improves both inter-group and intra-group fairness while maintaining overall detection accuracy across domains.
Similar Papers
Fair and Interpretable Deepfake Detection in Videos
CV and Pattern Recognition
Finds fake videos fairly for everyone.
Rethinking Individual Fairness in Deepfake Detection
Machine Learning (CS)
Makes fake videos fairer for everyone.
Generalized Design Choices for Deepfake Detectors
CV and Pattern Recognition
Finds fake videos more reliably.