Score: 0

Faster Algorithms for Structured Matrix Multiplication via Flip Graph Search

Published: November 13, 2025 | arXiv ID: 2511.10786v1

By: Kirill Khoruzhii, Patrick Gelß, Sebastian Pokutta

Potential Business Impact:

Makes computers multiply numbers much faster.

Business Areas:
A/B Testing Data and Analytics

We give explicit low-rank bilinear non-commutative schemes for multiplying structured $n \times n$ matrices with $2 \leq n \leq 5$, which serve as building blocks for recursive algorithms with improved multiplicative factors in asymptotic complexity. Our schemes are discovered over $\mathbb{F}_2$ or $\mathbb{F}_3$ and lifted to $\mathbb{Z}$ or $\mathbb{Q}$. Using a flip graph search over tensor decompositions, we derive schemes for general, upper-triangular, lower-triangular, symmetric, and skew-symmetric inputs, as well as products of a structured matrix with its transpose. In particular, we obtain $4 \times 4$ rank-34 schemes: (i) multiplying a general matrix by its transpose using 10 recursive calls, improving the factor from 26/41 (0.634) to 8/13 (0.615); and (ii) multiplying an upper-triangular matrix by a general matrix using 12 recursive calls, improving the factor from 8/13 (0.615) to 22/37 (0.595). Additionally, using $\mathbb{F}_3$ flip graphs, we discover schemes over $\mathbb{Q}$ that fundamentally require the inverse of 2, including a $2 \times 2$ symmetric-symmetric multiplication of rank 5 and a $3 \times 3$ skew-symmetric-general multiplication of rank 14 (improving upon AlphaTensor's 15).

Page Count
11 pages

Category
Computer Science:
Symbolic Computation