Score: 0

A Compilation Framework for Quantum Circuits with Mid-Circuit Measurement Error Awareness

Published: November 14, 2025 | arXiv ID: 2511.10921v1

By: Ming Zhong , Zhemin Zhang , Xiangyu Ren and more

Potential Business Impact:

Makes quantum computers work much better.

Business Areas:
Quantum Computing Science and Engineering

Mid-circuit measurement (MCM) provides the capability for qubit reuse and dynamic control in quantum processors, enabling more resource-efficient algorithms and supporting error-correction procedures. However, MCM introduces several sources of error, including measurement-induced crosstalk, idling-qubit decoherence, and reset infidelity, and these errors exhibit pronounced qubit-dependent variability within a single device. Since existing compilers such as the Qiskit-compiler and QR-Map (the state-of-art qubit reuse compiler) do not account for this variability, circuits with frequent MCM operations often experience substantial fidelity loss. In thie paper, we propose MERA, a compilation framework that performs MCM-error-aware layout, routing, and scheduling. MERA leverages lightweight profiling to obtain a stable per-qubit MCM error distribution, which it uses to guide error-aware qubit mapping and SWAP insertions. To further mitigate MCM-related decoherence and crosstalk, MERA augments as-late-as-possible scheduling with context-aware dynamic decoupling. Evaluated on 27 benchmark circuits, MERA achieves 24.94% -- 52.00% fidelity improvement over the Qiskit compiler (optimization level 3) without introducing additional overhead. On QR-Map-generated circuits, it improves fidelity by 29.26% on average and up to 122.58% in the best case, demonstrating its effectiveness for dynamic circuits dominated by MCM operations.

Page Count
8 pages

Category
Physics:
Quantum Physics