Experiences from Benchmarking Vision-Language-Action Models for Robotic Manipulation
By: Yihao Zhang, Yuankai Qi, Xi Zheng
Potential Business Impact:
Robots learn to do tasks better by watching and listening.
Foundation models applied in robotics, particularly \textbf{Vision--Language--Action (VLA)} models, hold great promise for achieving general-purpose manipulation. Yet, systematic real-world evaluations and cross-model comparisons remain scarce. This paper reports our \textbf{empirical experiences} from benchmarking four representative VLAs -- \textbf{ACT}, \textbf{OpenVLA--OFT}, \textbf{RDT-1B}, and \boldmath{$π_0$} -- across four manipulation tasks conducted in both simulation and on the \textbf{ALOHA Mobile} platform. We establish a \textbf{standardized evaluation framework} that measures performance along three key dimensions: (1) \textit{accuracy and efficiency} (success rate and time-to-success), (2) \textit{adaptability} across in-distribution, spatial out-of-distribution, and instance-plus-spatial out-of-distribution settings, and (3) \textit{language instruction-following accuracy}. Through this process, we observe that \boldmath{$π_0$} demonstrates superior adaptability in out-of-distribution scenarios, while \textbf{ACT} provides the highest stability in-distribution. Further analysis highlights differences in computational demands, data-scaling behavior, and recurring failure modes such as near-miss grasps, premature releases, and long-horizon state drift. These findings reveal practical trade-offs among VLA model architectures in balancing precision, generalization, and deployment cost, offering actionable insights for selecting and deploying VLAs in real-world robotic manipulation tasks.
Similar Papers
Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Robotics
Makes robots understand and do tasks faster.
Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Robotics
Makes robots understand and do tasks faster.
Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Robotics
Makes robots understand and do tasks faster.