Multi-Agent Collaborative Fuzzing with Continuous Reflection for Smart Contracts Vulnerability Detection
By: Jie Chen, Liangmin Wang
Potential Business Impact:
Finds hidden bugs in smart contracts faster.
Fuzzing is a widely used technique for detecting vulnerabilities in smart contracts, which generates transaction sequences to explore the execution paths of smart contracts. However, existing fuzzers are falling short in detecting sophisticated vulnerabilities that require specific attack transaction sequences with proper inputs to trigger, as they (i) prioritize code coverage over vulnerability discovery, wasting considerable effort on non-vulnerable code regions, and (ii) lack semantic understanding of stateful contracts, generating numerous invalid transaction sequences that cannot pass runtime execution. In this paper, we propose SmartFuzz, a novel collaborative reflective fuzzer for smart contract vulnerability detection. It employs large language model-driven agents as the fuzzing engine and continuously improves itself by learning and reflecting through interactions with the environment. Specifically, we first propose a new Continuous Reflection Process (CRP) for fuzzing smart contracts, which reforms the transaction sequence generation as a self-evolving process through continuous reflection on feedback from the runtime environment. Then, we present the Reactive Collaborative Chain (RCC) to orchestrate the fuzzing process into multiple sub-tasks based on the dependencies of transaction sequences. Furthermore, we design a multi-agent collaborative team, where each expert agent is guided by the RCC to jointly generate and refine transaction sequences from both global and local perspectives. We conduct extensive experiments to evaluate SmartFuzz's performance on real-world contracts and DApp projects. The results demonstrate that SmartFuzz outperforms existing state-of-the-art tools: (i) it detects 5.8\%-74.7\% more vulnerabilities within 30 minutes, and (ii) it reduces false negatives by up to 80\%.
Similar Papers
MultiFuzz: A Dense Retrieval-based Multi-Agent System for Network Protocol Fuzzing
Cryptography and Security
Finds hidden computer bugs by understanding rules.
All You Need Is A Fuzzing Brain: An LLM-Powered System for Automated Vulnerability Detection and Patching
Cryptography and Security
Finds and fixes computer security holes automatically.
Coverage-Guided Pre-Silicon Fuzzing of Open-Source Processors based on Leakage Contracts
Cryptography and Security
Finds hidden security flaws in computer chips.