Score: 1

Innovative Design of Multi-functional Supernumerary Robotic Limbs with Ellipsoid Workspace Optimization

Published: November 15, 2025 | arXiv ID: 2511.12186v1

By: Jun Huo , Jian Huang , Jie Zuo and more

Potential Business Impact:

Helps robots with extra arms and legs move better.

Business Areas:
Robotics Hardware, Science and Engineering, Software

Supernumerary robotic limbs (SRLs) offer substantial potential in both the rehabilitation of hemiplegic patients and the enhancement of functional capabilities for healthy individuals. Designing a general-purpose SRL device is inherently challenging, particularly when developing a unified theoretical framework that meets the diverse functional requirements of both upper and lower limbs. In this paper, we propose a multi-objective optimization (MOO) design theory that integrates grasping workspace similarity, walking workspace similarity, braced force for sit-to-stand (STS) movements, and overall mass and inertia. A geometric vector quantification method is developed using an ellipsoid to represent the workspace, aiming to reduce computational complexity and address quantification challenges. The ellipsoid envelope transforms workspace points into ellipsoid attributes, providing a parametric description of the workspace. Furthermore, the STS static braced force assesses the effectiveness of force transmission. The overall mass and inertia restricts excessive link length. To facilitate rapid and stable convergence of the model to high-dimensional irregular Pareto fronts, we introduce a multi-subpopulation correction firefly algorithm. This algorithm incorporates a strategy involving attractive and repulsive domains to effectively handle the MOO task. The optimized solution is utilized to redesign the prototype for experimentation to meet specified requirements. Six healthy participants and two hemiplegia patients participated in real experiments. Compared to the pre-optimization results, the average grasp success rate improved by 7.2%, while the muscle activity during walking and STS tasks decreased by an average of 12.7% and 25.1%, respectively. The proposed design theory offers an efficient option for the design of multi-functional SRL mechanisms.

Country of Origin
🇫🇷 🇨🇳 China, France

Page Count
20 pages

Category
Computer Science:
Robotics