Seg-VAR: Image Segmentation with Visual Autoregressive Modeling
By: Rongkun Zheng , Lu Qi , Xi Chen and more
Potential Business Impact:
Makes computers perfectly outline any object in pictures.
While visual autoregressive modeling (VAR) strategies have shed light on image generation with the autoregressive models, their potential for segmentation, a task that requires precise low-level spatial perception, remains unexplored. Inspired by the multi-scale modeling of classic Mask2Former-based models, we propose Seg-VAR, a novel framework that rethinks segmentation as a conditional autoregressive mask generation problem. This is achieved by replacing the discriminative learning with the latent learning process. Specifically, our method incorporates three core components: (1) an image encoder generating latent priors from input images, (2) a spatial-aware seglat (a latent expression of segmentation mask) encoder that maps segmentation masks into discrete latent tokens using a location-sensitive color mapping to distinguish instances, and (3) a decoder reconstructing masks from these latents. A multi-stage training strategy is introduced: first learning seglat representations via image-seglat joint training, then refining latent transformations, and finally aligning image-encoder-derived latents with seglat distributions. Experiments show Seg-VAR outperforms previous discriminative and generative methods on various segmentation tasks and validation benchmarks. By framing segmentation as a sequential hierarchical prediction task, Seg-VAR opens new avenues for integrating autoregressive reasoning into spatial-aware vision systems. Code will be available at https://github.com/rkzheng99/Seg-VAR.
Similar Papers
ARGenSeg: Image Segmentation with Autoregressive Image Generation Model
CV and Pattern Recognition
Lets computers see and understand pictures perfectly.
Visual Autoregressive Modeling for Instruction-Guided Image Editing
CV and Pattern Recognition
Edits pictures perfectly, following your exact words.
Markovian Scale Prediction: A New Era of Visual Autoregressive Generation
CV and Pattern Recognition
Makes AI draw pictures faster and use less power.