Auto-encoder model for faster generation of effective one-body gravitational waveform approximations
By: Suyog Garg, Feng-Li Lin, Kipp Cannon
Potential Business Impact:
Makes space-wave detectors find black holes faster.
Upgrades to current gravitational wave detectors for the next observation run and upcoming third-generation observatories, like the Einstein telescope, are expected to have enormous improvements in detection sensitivities and compact object merger event rates. Estimation of source parameters for a wider parameter space that these detectable signals will lie in, will be a computational challenge. Thus, it is imperative to have methods to speed-up the likelihood calculations with theoretical waveform predictions, which can ultimately make the parameter estimation faster and aid in rapid multi-messenger follow-ups. Towards this end, we present a conditional variational auto-encoder model, based on the best performing architecture of Liao+2021, for faster generation of aligned-spin SEOBNRv4 inspiral-merger-ringdown waveforms. Our parameter space consists of four parameters, [$m_1$, $m_2$, $χ_1(z)$, $χ_2(z)$]. The masses are uniformly sampled in $[5,75]\,M_{\odot}$ with a mass ratio limit at $10\,M_{\odot}$, while the spins are uniform in $[-0.99,0.99]$. We train the model using $\sim10^5$ input waveforms data with a 70\%/10\% train/validation split, while 20\% data are reserved for testing. The median mismatch for the generated waveforms in the test dataset is $\sim10^{-2}$, with better performance in a restricted parameter space of $χ_{\rm eff}\in[-0.80,0.80]$. Our model is able to generate 100 waveforms in 0.1 second at an average speed of about 4.46 ms per waveform. This is 2-3 orders of magnitude faster than the native SEOBNRv4 implementation in lalsimulation. The latent sampling uncertainty of our model can be quantified with a mean mismatch deviation of $2\times10^{-1}$ for 1000 generations of the same waveform. Our work aims to be the first step towards developing a production-ready machine learning framework for the faster generation of gravitational waveform approximations.
Similar Papers
Rapid parameter estimation with the full symphony of compact binary mergers using meshfree approximation
General Relativity and Quantum Cosmology
Finds space signals faster, like a super-powered telescope.
Flexible Gravitational-Wave Parameter Estimation with Transformers
General Relativity and Quantum Cosmology
Lets computers find space ripples faster.
Neural surrogates for designing gravitational wave detectors
Machine Learning (CS)
Speeds up science experiments using smart computer models.