Reconstruction of Manifold Distances from Noisy Observations
By: Charles Fefferman, Jonathan Marty, Kevin Ren
Potential Business Impact:
Maps bumpy shapes from shaky distance guesses.
We consider the problem of reconstructing the intrinsic geometry of a manifold from noisy pairwise distance observations. Specifically, let $M$ denote a diameter 1 d-dimensional manifold and $μ$ a probability measure on $M$ that is mutually absolutely continuous with the volume measure. Suppose $X_1,\dots,X_N$ are i.i.d. samples of $μ$ and we observe noisy-distance random variables $d'(X_j, X_k)$ that are related to the true geodesic distances $d(X_j,X_k)$. With mild assumptions on the distributions and independence of the noisy distances, we develop a new framework for recovering all distances between points in a sufficiently dense subsample of $M$. Our framework improves on previous work which assumed i.i.d. additive noise with known moments. Our method is based on a new way to estimate $L_2$-norms of certain expectation-functions $f_x(y)=\mathbb{E}d'(x,y)$ and use them to build robust clusters centered at points of our sample. Using a new geometric argument, we establish that, under mild geometric assumptions--bounded curvature and positive injectivity radius--these clusters allow one to recover the true distances between points in the sample up to an additive error of $O(\varepsilon \log \varepsilon^{-1})$. We develop two distinct algorithms for producing these clusters. The first achieves a sample complexity $N \asymp \varepsilon^{-2d-2}\log(1/\varepsilon)$ and runtime $o(N^3)$. The second introduces novel geometric ideas that warrant further investigation. In the presence of missing observations, we show that a quantitative lower bound on sampling probabilities suffices to modify the cluster construction in the first algorithm and extend all recovery guarantees. Our main technical result also elucidates which properties of a manifold are necessary for the distance recovery, which suggests further extension of our techniques to a broader class of metric probability spaces.
Similar Papers
Estimation of Local Geometric Structure on Manifolds from Noisy Data
Statistics Theory
Finds the closest point on a hidden shape.
Statistical Inference for Manifold Similarity and Alignability across Noisy High-Dimensional Datasets
Statistics Theory
Compares complex data by looking at its hidden shapes.
Local Averaging Accurately Distills Manifold Structure From Noisy Data
Machine Learning (Stat)
Cleans up messy data to find hidden shapes.