Score: 0

Collective decision-making with higher-order interactions on $d$-uniform hypergraphs

Published: November 17, 2025 | arXiv ID: 2511.13452v1

By: Thierry Njougouo, Timoteo Carletti, Elio Tuci

Potential Business Impact:

Groups can choose the wrong idea if too many people join.

Business Areas:
Peer to Peer Collaboration

Understanding how group interactions influence opinion dynamics is fundamental to the study of collective behavior. In this work, we propose and study a model of opinion dynamics on $d$-uniform hypergraphs, where individuals interact through group-based (higher-order) structures rather than simple pairwise connections. Each one of the two opinions $A$ and $B$ is characterized by a quality, $Q_A$ and $Q_B$, and agents update their opinions according to a general mechanism that takes into account the weighted fraction of agents supporting either opinion and the pooling error, $α$, a proxy for the information lost during the interaction. Through bifurcation analysis of the mean-field model, we identify two critical thresholds, $α_{\text{crit}}^{(1)}$ and $α_{\text{crit}}^{(2)}$, which delimit stability regimes for the consensus states. These analytical predictions are validated through extensive agent-based simulations on both random and scale-free hypergraphs. Moreover, the analytical framework demonstrates that the bifurcation structure and critical thresholds are independent of the underlying topology of the higher-order network, depending solely on the parameters $d$, i.e., the size of the interaction groups, and the quality ratio. Finally, we bring to the fore a nontrivial effect: the large sizes of the interaction groups, could drive the system toward the adoption of the worst option.

Page Count
13 pages

Category
Physics:
Physics and Society