Score: 3

RAC-DMVC: Reliability-Aware Contrastive Deep Multi-View Clustering under Multi-Source Noise

Published: November 17, 2025 | arXiv ID: 2511.13561v1

By: Shihao Dong , Yue Liu , Xiaotong Zhou and more

Potential Business Impact:

Cleans messy data to group things better.

Business Areas:
Image Recognition Data and Analytics, Software

Multi-view clustering (MVC), which aims to separate the multi-view data into distinct clusters in an unsupervised manner, is a fundamental yet challenging task. To enhance its applicability in real-world scenarios, this paper addresses a more challenging task: MVC under multi-source noises, including missing noise and observation noise. To this end, we propose a novel framework, Reliability-Aware Contrastive Deep Multi-View Clustering (RAC-DMVC), which constructs a reliability graph to guide robust representation learning under noisy environments. Specifically, to address observation noise, we introduce a cross-view reconstruction to enhances robustness at the data level, and a reliability-aware noise contrastive learning to mitigates bias in positive and negative pairs selection caused by noisy representations. To handle missing noise, we design a dual-attention imputation to capture shared information across views while preserving view-specific features. In addition, a self-supervised cluster distillation module further refines the learned representations and improves the clustering performance. Extensive experiments on five benchmark datasets demonstrate that RAC-DMVC outperforms SOTA methods on multiple evaluation metrics and maintains excellent performance under varying ratios of noise.

Country of Origin
πŸ‡¨πŸ‡³ πŸ‡ΈπŸ‡¬ Singapore, China

Repos / Data Links

Page Count
9 pages

Category
Computer Science:
Machine Learning (CS)