Hierarchical Semantic Learning for Multi-Class Aorta Segmentation
By: Pengcheng Shi
Potential Business Impact:
Helps doctors see inside blood vessels better.
The aorta, the body's largest artery, is prone to pathologies such as dissection, aneurysm, and atherosclerosis, which often require timely intervention. Minimally invasive repairs involving branch vessels necessitate detailed 3D anatomical analysis. Existing methods often overlook hierarchical anatomical relationships while struggling with severe class imbalance inherent in vascular structures. We address these challenges with a curriculum learning strategy that leverages a novel fractal softmax for hierarchical semantic learning. Inspired by human cognition, our approach progressively learns anatomical constraints by decomposing complex structures from simple to complex components. The curriculum learning framework naturally addresses class imbalance by first establishing robust feature representations for dominant classes before tackling rare but anatomically critical structures, significantly accelerating model convergence in multi-class scenarios. Our two-stage inference strategy achieves up to fivefold acceleration, enhancing clinical practicality. On the validation set at epoch 50, our hierarchical semantic loss improves the Dice score of nnU-Net ResEnc M by 11.65%. The proposed model demonstrates a 5.6% higher Dice score than baselines on the test set. Experimental results show significant improvements in segmentation accuracy and efficiency, making the framework suitable for real-time clinical applications. The implementation code for this challenge entry is publicly available at: https://github.com/PengchengShi1220/AortaSeg24. The code for fractal softmax will be available at https://github.com/PengchengShi1220/fractal-softmax.
Similar Papers
Towards the Automatic Segmentation, Modeling and Meshing of the Aortic Vessel Tree from Multicenter Acquisitions: An Overview of the SEG.A. 2023 Segmentation of the Aorta Challenge
CV and Pattern Recognition
Helps doctors see heart blood vessels better.
A Computational Pipeline for Patient-Specific Modeling of Thoracic Aortic Aneurysm: From Medical Image to Finite Element Analysis
Image and Video Processing
Predicts when weak heart arteries will burst.
Challenges in Deep Learning-Based Small Organ Segmentation: A Benchmarking Perspective for Medical Research with Limited Datasets
CV and Pattern Recognition
Helps doctors see heart disease in tiny pictures.