Score: 0

Multimodal Wireless Foundation Models

Published: November 19, 2025 | arXiv ID: 2511.15162v1

By: Ahmed Aboulfotouh, Hatem Abou-Zeid

Potential Business Impact:

Lets wireless devices understand more things at once.

Business Areas:
Wireless Hardware, Mobile

Wireless foundation models (WFMs) have recently demonstrated promising capabilities, jointly performing multiple wireless functions and adapting effectively to new environments. However, while current WFMs process only one modality, depending on the task and operating conditions, the most informative modality changes and no single modality is best for all tasks. WFMs should therefore be designed to accept multiple modalities to enable a broader and more diverse range of tasks and scenarios. In this work, we propose and build the first multimodal wireless foundation model capable of processing both raw IQ streams and image-like wireless modalities (e.g., spectrograms and CSI) and performing multiple tasks across both. We introduce masked wireless modeling for the multimodal setting, a self-supervised objective and pretraining recipe that learns a joint representation from IQ streams and image-like wireless modalities. We evaluate the model on five tasks across both modality families: image-based (human activity sensing, RF signal classification, 5G NR positioning) and IQ-based (RF device fingerprinting, interference detection/classification). The multimodal WFM is competitive with single-modality WFMs, and in several cases surpasses their performance. Our results demonstrates the strong potential of developing multimodal WFMs that support diverse wireless tasks across different modalities. We believe this provides a concrete step toward both AI-native 6G and the vision of joint sensing, communication, and localization.

Page Count
6 pages

Category
Electrical Engineering and Systems Science:
Signal Processing