Score: 2

Representation Space Constrained Learning with Modality Decoupling for Multimodal Object Detection

Published: November 19, 2025 | arXiv ID: 2511.15433v1

By: YiKang Shao, Tao Shi

Potential Business Impact:

Helps computers see better using different senses.

Business Areas:
Image Recognition Data and Analytics, Software

Multimodal object detection has attracted significant attention in both academia and industry for its enhanced robustness. Although numerous studies have focused on improving modality fusion strategies, most neglect fusion degradation, and none provide a theoretical analysis of its underlying causes. To fill this gap, this paper presents a systematic theoretical investigation of fusion degradation in multimodal detection and identifies two key optimization deficiencies: (1) the gradients of unimodal branch backbones are severely suppressed under multimodal architectures, resulting in under-optimization of the unimodal branches; (2) disparities in modality quality cause weaker modalities to experience stronger gradient suppression, which in turn results in imbalanced modality learning. To address these issues, this paper proposes a Representation Space Constrained Learning with Modality Decoupling (RSC-MD) method, which consists of two modules. The RSC module and the MD module are designed to respectively amplify the suppressed gradients and eliminate inter-modality coupling interference as well as modality imbalance, thereby enabling the comprehensive optimization of each modality-specific backbone. Extensive experiments conducted on the FLIR, LLVIP, M3FD, and MFAD datasets demonstrate that the proposed method effectively alleviates fusion degradation and achieves state-of-the-art performance across multiple benchmarks. The code and training procedures will be released at https://github.com/yikangshao/RSC-MD.

Country of Origin
🇨🇳 China

Repos / Data Links

Page Count
13 pages

Category
Computer Science:
CV and Pattern Recognition